Radiation Processing

Chemical Effects

Reactions of Hydrated Electron

Major Reactions of e-aq

 H_2O

1. $e_{aq}^{-} + N_2 O \longrightarrow N_2 + O \longrightarrow OH$

Used to detect/estimate e-aq and to increase OH yield

2.
$$e_{aq}^{-} + O_2^{-} \rightarrow O_2^{-} \xrightarrow{} HO_2^{-}$$

Used to produce O_2^- , prevalent in systems open to air

3.
$$e_{aq}^{-}$$
 + $C_6H_5I \longrightarrow C_6H_5I + I^{-}$

Dissociative electron capture by halogenated organics can be used to detect and estimate e_{aq}

4.
$$e_{aq}^{-}$$
 + F e^{3+} \rightarrow F e^{2+}
 e_{aq}^{-} + NO₃ \rightarrow ·NO₃²⁻

Reactions with cations and many anions are known to occur

Reactions of Hydrated Electrons (contd)

steps

- 5. Reduces carbonyls to hydroxy derivatives several e⁻_{aq} + (CH₃)₂CO → (CH₃)₂ CHOH
- 6. Decreases aromaticity

7. Reacts with cellular constituents (e.g. amino acids)

$$e_{aq} + NH_3^+CHRCOO^- \longrightarrow NH_3 + \cdot CHRCOO \longrightarrow \cdot NH_2 + RCHCOOH \longrightarrow \cdot H + NH_2CHRCOO^-$$

Reactions of ·OH

The major types of reactions are

- 2. Hydrogen abstraction

 $RH + \cdot OH \longrightarrow R \cdot + H_2O$

3. Electron transfer

 $Br^{-} + \cdot OH \longrightarrow \cdot Br + OH^{-}$ $Fe^{2+} + \cdot OH \longrightarrow Fe^{3+} + OH^{-}$

Reactions of ·**OH** (contd)

4. Produce ketones from alcohols $(CH_3)_2CHOH + OH \longrightarrow (CH_3)_2COH + H_2O$ $(CH_3)_2COH + (CH_3)_2COH \longrightarrow (CH_3)_2-C-OH$ $(CH_3)_2-C-OH$

$$\rightarrow$$
 (CH₃)₂CHOH + (CH₃)₂CO

 Hydroxyl radical is just about the most reactive free radical known

Reactions of Hydrogen Atom

The two main reactions are addition to double bonds and hydrogen abstraction

1. Addition to double bond

2. Hydrogen abstraction

RH + H· \longrightarrow $R + H_2$

With oxygen, it gives the superoxide anion

$$O_2 + H \cdot \longrightarrow HO'_2 \longrightarrow O_2^{-} + H^+$$

Differentiation of Reactive Species

One can differentiate between reactions of the different reactive species by choosing appropriate conditions

- In inert atmosphere (e.g., N₂ or vacuum) all three, e⁻_{aq},
 H and ·OH are present
- In the presence of N₂O the predominant free radical is
 OH (90% ·OH, 10% ·H)
- In air the reactive species is mainly \cdot OH (~45% + rather unreactive O₂⁻·/HO·₂ ~55%)
- In the presence of O₂ and formate (10⁻² to 10⁻¹ mol·dm⁻³) only O₂⁻·/HO⁻₂ are present

$$\begin{array}{cccc} \cdot OH + HCO_{2}^{-} & \longrightarrow & CO_{2}^{-} \cdot + H_{2}O \\ \cdot H + HCO_{2}^{-} & \longrightarrow & CO_{2}^{-} \cdot + H_{2} \\ O_{2} + CO_{2}^{-} & \longrightarrow & O_{2}^{-} \cdot + CO_{2} \end{array}$$

Comparison of 'H With 'OH and e_{aq} **Reactivity**

Inactivation Efficiencies of Reactive Free Radical Species with Ribosomes

Species	Relative Inactivation Efficiency	
	In Vacuum	Expected in air
юн	1.0	~2.5 ^a
e ⁻	0.8	~0.1 ^b
·······································	4.2	~0.1 ^b

^a Increased damage due to peroxidation

^b Damage from superoxide anion (O_2^{-})

Singh and Singh (1983)

pH Dependence of Yields on Radiolysis of Water

The pH range of most foods lies between 2 and 8

Some Reaction Rate Constants in Aqueous Solutions at 20°C

Reactant, S	k(e ⁻ _{aq} + S)	K(•OH + S)	k(•H + S)
Fe ²⁺	1.2 x 10 ⁸	3 x 10 ⁸	1.6 x 10 ⁷
Mn²+	6.0 x 10 ⁷	3 x 10 ⁸	3 x 10 ⁷
Cu ²⁺	3.0 x 10 ¹⁰	3.5 x 10 ⁸	4.2 x 10 ⁷
NO ⁻ 2	4.6 x 10 ⁹	8 x 10 ⁹	9 x 10 ⁶
NO ⁻ 3	1.1 x 10 ¹⁰	slow	5 x 10 ⁶
H ₂ PO ⁻ 4	4.2 x 10 ⁶	<10 ⁷	no reaction
HCO-3	<10 ⁶	1 x 10 ⁷	~ 104
CO ₂	7.7 x 10 ⁹	no rection	~ 10⁴
Br ⁻	no reaction	1.1 x 10 ⁹	no reaction
Cl-	no reaction	10 ⁹	no reaction
H_2O_2	1.2 x 10 ¹⁰	2.2 x 10 ⁷	6 x 10 ⁷
0 ₂	2.2 x 10 ¹⁰	no reaction	2 x 10 ¹⁰

(Units: mol⁻¹•dm³•s⁻¹)

In general

- e⁻_{aq} is a very strong reducing agent
 ·H is a weaker reducing agent, and
- •OH is a strong oxidizing agent

Some Reaction Rate Constants in Aqueous Solutions at 20°C

Reactant, S	k(e ⁻ _{aq} + S)	K(•OH + S)	k(·H + S)
Fe ²⁺	1.2 x 10 ⁸	3 x 10 ⁸	1.6 x 10 ⁷
Mn²+	6.0 x 10 ⁷	3 x 10 ⁸	3 x 10 ⁷
Cu ²⁺	3.0 x 10 ¹⁰	3.5 x 10 ⁸	4.2 x 10 ⁷
NO ⁻ 2	4.6 x 10 ⁹	8 x 10 ⁹	9 x 10 ⁶
NO-3	1.1 x 10 ¹⁰	slow	5 x 10 ⁶
H ₂ PO-4	4.2 x 10 ⁶	<10 ⁷	no reaction
HCO-3	<10 ⁶	1 x 10 ⁷	~ 104
CO ₂	7.7 x 10 ⁹	no rection	~ 104
Br	no reaction	1.1 x 10 ⁹	no reaction
Cl-	no reaction	10 ⁹	no reaction
H ₂ O ₂	1.2 x 10 ¹⁰	2.2 x 10 ⁷	6 x 10 ⁷
02	2.2 x 10 ¹⁰	no reaction	2 x 10 ¹⁰

(Units: mol⁻¹•dm³•s⁻¹)

In general

- e⁻_{aq} is a very strong reducing agent
 ·H is a weaker reducing agent, and
 ·OH is a strong oxidizing agent

Some Reaction Rate Constants in Aqueous Solutions at 20°C (contd)

Reactant, S	k(e ⁻ _{aq} + S)	K(•OH + S)	k(•H + S)
Aliphatic hydrocarbons	Negligible	10 ⁵ -10 ^{8a}	10 ⁵ - 10 ^{8a}
$(CH_3)_2CO$	5.9 x 10 ⁹	9.0 x 10 ⁷	3.4 x 10 ⁵
>C=C<	10 ⁶	~10 ⁹	~10 ⁹
>C=C-C=C<	8 x10 ⁹	10 ¹⁰	10 ⁹ -10 ¹⁰
ROOH, ROOR	10⁹-10 ¹⁰	10 ⁵ -10 ⁸	10 ⁵ -10 ⁸
RCI	10 ⁸ -10 ⁹	b	b
RNO ₂	10⁹-10 ¹⁰	b	b
Aromatics	10 ⁷	10 ⁹	~10 ⁸
-SH	~10 ¹⁰	~10 ¹⁰	~10 ⁹
-SS-	~10 ¹⁰	~10 ¹⁰	~10 ⁹
H ₂ NCH ₂ COOH	8.2 x 10 ⁶	1.6 x 10 ⁷	7 x 10 ⁴

^a Depends on the C-H bond strength, ^b Depends on R

Some Reaction Rate Constants in Aqueous Solutions at 20°C (contd)

- Protection of biological systems by the -SH compounds is due to their very high reactivity with all of the three primary species from water
- The >C=C-C=C< would be the next best. However, its secondary radical could be damaging to biological systems, but RS· is not

Reactions of H₂O₂

1. Formation

 $\begin{array}{ccc} \cdot OH & + \cdot OH & \longrightarrow H_2O_2 \text{ (in vacuum/N_2)} \\ O_2^{-} \cdot & + O_2^{-} \cdot & + 2H^+ & \longrightarrow H_2O \text{ (in air)} \end{array}$

2. Reactions

Fenton Reaction $H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + OH^- + \cdot OH$

HRP Reaction	H₂O₂ + HRP>HRP-I
	RH + HRP-I → R· + HRP-II
	RH + HRP-II —→ R· + HRP

 Overall, it is a mild oxidizing agent; it oxidizes phenols and inactivates enzymes

Other Secondary Reactive Species

- 1. Superoxide Anion (O_2^{-1})
- Formation

- 2. Singlet Oxygen (¹O₂)
- A minor species which oxidizes unsaturated compounds

Lipids + ${}^{1}O_{2} \longrightarrow$ Lipid Hydroperoxide (ROOH) ROOH + Fe²⁺ \longrightarrow RO· + OH⁻ + Fe³⁺

Alkoxy Radical (Fenton like reaction)

Detection of Various Reactive Species

e- _{aq}	∙ОН	٠H	H_2O_2
- ESR	-ESR	-ESR	-ESR/Fenton Reaction (·OH formation)
-Optical absorption	-C₂H₄ form- ation with methional	-Formation of characteristic products follow- ing its reactions (e.g., H ₂)	-Inhibition of its reaction by catalase
-Reaction with N ₂ O	-Bleaching of p-nitroso- dimethylanilin -Hydroxylation phenol and/or salicylic acid -Reaction with tryptophan	ne i of	-lodine liberation from acidified KI solutions

Reactions of Organic Free Radicals

- 1. Peroxy Radicals
 - Formation
 R· +O₂
 → RO₂· (Peroxy Radical)
 - Reactions

 - Peroxy radicals are the main vehicle of lipid peroxidation leading to rancidity of oils and fats

Reactions of Organic Free Radicals (contd)

2. Hydrogen Abstraction $R \cdot + R^{1}H \longrightarrow RH + \cdot R^{1}$ (less efficient than $\cdot OH \text{ or } \cdot H$)

- 3. Addition to Double Bonds
 R
 I
 R· + > C = C→> > C C <</p>
 (usually, not as efficient as the addition of H· or ·OH)
- 4. Recombination R· + R· → R-R
- 5. Disproportionation

 $RCH_2CH_2 + RCH_2CH_2 \longrightarrow RCH_2CH_3 + RCH = CH_2$

Radiolysis of Cyclohexane $\bigcirc C_6H_{12}$

Products	Initial Yield (molecules/100 eV)
H_{2} c-C ₆ H ₁₀ (c-C ₆ H ₁₁) ₂ CH=CH(CH ₂) ₃ CH ₂ c-C ₅ H ₇ -CH ₃ c-C ₆ H ₁₁ -(CH ₂) ₄ CH=CH ₂ n-C ₆ H ₁₄	5.6 ± 0.1 3.2 ± 0.2 1.76 ± 0.05 0.40 ± 0.05 0.15 ± 0.01 0.12 ± 0.02 0.08 ± 0.02
unidentified C12 c-C ₆ H ₁₁ -C ₂ H ₅	~ 0.05 ~ 0.04

Gamma Radiolysis of Liquid Cyclohexane in the Presence of Oxygen

	G (Pro	G (Product)	
Product	Evacuated Sample	Sample in O ₂ (2 mol m ⁻³)	
1-Hexene	0.5	0.26	
Hexane	0.1	<0.01	
Methylcylopentane	0.3	~0.03	
Cyclohexene	3.2	1.5	
Bicylohexyl	1.9	0.29	
Cylohexanol	0	3.2	
Cylohexanone	0	2.6	
Peroxides	0	0.61	

Radiolysis of Benzene C_6H_6

Products	G (molecules/100 eV)
Hydrogen	0.039
Ethylene	0.022
Acetylene	0.020
1,4-Cyclohexadiene	0.021
1,3-Cyclohexadiene	0.008
Phenyl-2,4-Cyclohexadiene	0.021
Phenyl-2,5-Cyclohexadiene	0.045
Biphenyl	0.065
C ₆ units incorporated in polymers	0.8

γ- Radiolysis of Liquid Acetone and Methyl Acetate at ~ 22-28°C, G(Products)

Product	Acetone (CH ₃ COCH ₃)	Methyl Acetate (CH ₃ COOCH ₃)
Hydrogen	0.50	0.76
Carbon Monoxide	0.73	1.64
Carbon Dioxide	-	0.96
Methane	1.74	2.03
Ethane	0.24	0.34
Acetaldehyde	0.09	-
Dimethyl Ether	-	0.15
Acetic Acid	0.31	-
Biacetyl	0.28	-
Methyl Ethyl Ketor	ne 0.18	-
2-Propanol	0.09	-
(CH ₃ COCH ₂) ₂	0.27	-
CH ₃ COCH ₂ COCH ₃	0.11	-

Conclusions

 Understanding of the detailed chemical processes occurring on irradiation has helped develop many of the commercial applications of radiation processing, e.g., curing of coatings, crosslinking of polyethylene, and purification of water in the presence of ozone

 Continuing effort in this area is needed to improve current, and develop new, chemical effect based processes